A A A K K K
для людей з порушеннями зору
Авдіївське професійно-технічне училище

біологія

Дата: 26.10.2021 07:53
Кількість переглядів: 263

Тема      Застосування методів генної та клітинної інженерії в сучасній селекції. 

 

Клітинна інженерія

Клітинна інженерія — це галузь біотехнології, яка розробляє й використовує технології культивування клітин і тканин поза організмом у штучних умовах. Окрім того, у межах клітинної інженерії розробляють і використовують технології гібридизації клітин.

Одним із напрямів клітинної інженерії є клонування тварин і рослин. Клонування рослин, наприклад, дозволяє дуже швидко розмножувати найбільш цінні особини рослин, які характеризуються високою врожайністю, підвищеною стійкістю до захворювань або іншими якостями. Часто клонування використовують для розмноження унікальних декоративних форм рослин.

Одним із досягнень клітинної інженерії стала розробка методів використання стовбурових клітин у лікуванні людини . Здатність до необмеженого поділу і до перетворення на різні типи клітин (так звана плюрипотентність) робить їх ідеальним матеріалом для трансплантаційних методів терапії. Найбільш доступними вважаються стовбурові клітини дорослого організму. Однак реальний потенціал їх диференціювання ще слабо вивчений. Надзвичайно привабливі для використання в медицині є ембріональні стовбурові клітини людини: з них можна отримувати будь-які типи клітин організму.

 

Потрапляючи в організм під час трансплантації, стовбурові клітини продовжують ділитися й самі знаходять місце, де їхня допомога найпотрібніша. Ця здатність стовбурових клітин отримала назву хоумінг.

Генетична інженерія

Генетична (генна) інженерія — це галузь біотехнології, яка розробляє й використовує технології виділення генів з організмів і окремих клітин, їх видозмінення й уведення в інші клітини або організми.

Суть генетичної інженерії полягає в штучному створенні генів із потрібними властивостями і введення їх у відповідну клітину. Перенесення гена здійснює вектор (рекомбінантна ДНК) — спеціальна молекула ДНК, сконструйована на основі ДНК вірусів або плазмід, яка містить потрібний ген і здатна транспортувати його до клітини та забезпечити його вбудовування в її генетичний апарат. Генетична інженерія широко використовується як у наукових дослідженнях, так і в новітніх методах селекції.

Використання генної інженерії в галузі селекції стало причиною активних суперечок. Різні вчені та активісти громадських організацій наводили аргументи як «за», так і «проти» застосування цієї технології. Серед позитивних аргументів — підвищена врожайність, екологічні переваги, захист від шкідників. З іншого боку — невпевненість частини споживачів у безпечності нових технологій.

Теоретично, негативний вплив, наприклад, рослин, які отримані за допомогою технології генетичної інженерії, на інші організми можливий через наявність в організмі рослин біологічно активних речовин (інсектициди, фунгіциди та ін.). Вплив цих речовин може бути прямий або опосередкований через трофічні ланцюги. Однак до сьогодні достовірних експериментальних даних про негативний вплив таких організмів на нецільові види не отримано.

У Європі використовувати змінені за допомогою методів генної інженерії рослини сої та кукурудзи для виготовлення харчових продуктів дозволено з 1997 року, а харчові ферменти, добавки, одержані в результаті генної інженерії, використовують понад двадцять років. Проте в багатьох європейських країнах законодавчі акти з харчових продуктів містять вимоги щодо безпечності продуктів такого походження.

Генетично модифіковані організми

Генетично модифіковані організми (ГМО) — це організми, генотип яких було змінено за допомогою методів генетичної інженерії з використанням технології рекомбінантних ДНК. Інша назва генетично модифікованих організмів — трансгенні організми. Для створення генетично модифікованих організмів часто використовують такі методи перенесення генів, як створення вектора на основі бактеріальної плазміди та обстріл клітин із генної гармати.

 

Як ви вже знаєте, вектор є молекулою ДНК, яка здатна вбудовуватися в геном клітини і містить сторонній для цієї клітини ген. Такі вектори можна створювати на основі бактеріальних плазмід бактерії з роду Agrobacterium. Це зумовлено тим, що такі бактерії в природних умовах виробили здатність активно здійснювати горизонтальне перенесення генів між своїми клітинами і клітинами рослини, на якій вони паразитують. Якщо помістити в одну культуру бактерії та клітини рослин, то вектори на основі бактеріальних плазмід перенесуть ген у геном клітин рослини.

 

Генна гармата використовує для внесення в геном клітин дуже дрібні частки важких металів (золота, срібла, вольфраму), на яких наноситься ДНК. Ці частки вистрілюють по культурі клітин за допомогою стисненого повітря. Частина клітин у цьому випадку гине, але частина залишається живою й отримує чужий ген.

Використання ГМО

Такі організми можуть мати велике значення для підвищення ефективності сільського господарства та під час досліджень у галузі молекулярної біології. Перші генетично модифіковані організми, які одержали за допомогою методів молекулярної біології, з'явилися у світі лише у 80-х роках XXстоліття.

Зараз у різних галузях господарства широко використовуються генетично модифіковані організми, які належать до мікроорганізмів, тварин і рослин. Мікроорганізми використовують для синтезу людських білків (інсуліну, гормону росту тощо), які застосовують у медицині. Прикладом генетично модифікованих тварин є лосось (вбудований у геном ген забезпечив високу швидкість росту риби) та кози (новий ген забезпечує вироблення її молочними залозами молока з цінними для здоров'я речовинами). Генетично модифіковані рослини (соя, кукурудза тощо) мають підвищену стійкість до дії шкідників, захворювань і несприятливих погодних умов.

 

 

Тема    Генна інженерія людини: досягнення та ризики.

 

Використання технологій генетичної інженерії людини

Генетична (генна) інженерія надзвичайно широко використовується в сучасній біології та медицині. У наукових дослідженнях генетична інженерія дозволяє цілеспрямовано «вимикати» або «вмикати» потрібні гени. Це допомагає досліджувати їхні функції.

Активно використовують технології генетичної інженерії для діагностики захворювань. Діагностувати таким чином можна інфекційні, спадкові захворювання, а також різні форми раку. Ця діагностика ґрунтується на розпізнаванні специфічних ділянок нуклеїнових кислот — ДНК або РНК. Такий метод має дуже велику чутливість і високу надійність. Наприклад, для визначення конкретного збудника ангіни традиційними методами потрібно кілька днів, бо культуру бактерій спочатку треба вирощувати і лише потім визначати. А за допомогою аналізу ДНК збудника можна визначити в день взяття зразків.

Генна терапія

Логічним розвитком технологій генетичної інженерії людини було створення нового напряму в медицині — генної терапії. Генна терапія є сукупністю технологій, яка забезпечує внесення змін у генетичний апарат соматичних клітин людини. Головне її призначення — лікування спадкових захворювань і захворювань, які пов'язані з порушенням регуляції роботи генів (наприклад, онкологічних). У цій галузі постійно виникають нові напрями досліджень, а їхня загальна кількість щороку збільшується.

 

Основна ідея, покладена в основу технологій генної терапії, — заміна дефектного гена в клітинах на нормальний. Існує два основні методи, які використовують для цього. Перший — уведення гена до потрібних клітин прямо в організмі за допомогою вектора. Другий — уведення гена в клітини, які попередньо виділяють з організму, а потім знову вводять назад.

 

Генна терапія вже має приклади успішного застосування, але поки що всі ці дослідження експериментальні (тільки на добровольцях). Адже технологія є складною й потребує докладного вивчення можливих ризиків і негативних наслідків.

Технологія CRISPR

Одним із найновіших методів генної терапії стала технологія CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats). Цю систему відкрили у 2012 році. Її використовують бактерії для захисту від вірусів бактеріофагів. Принцип роботи цієї системи такий. Бактерія вбудовує у свою ДНК невеличкий шматочок ДНК вірусу і створює складний білковий комплекс, який містить цю послідовність. За допомогою такої маркерної послідовності білковий комплекс легко ідентифікує ДНК вірусу, який може проникнути в клітину, і знешкоджує її.

Головна перевага такої системи — здатність до ідентифікації дуже маленької ділянки ДНК. Тому створені на основі цієї технології методи генної терапії мають можливість знайти в геномі клітини конкретну ділянку певного гена і вирізати її або замінити на іншу. Система CRISPR стала дуже точним інструментом, що може працювати як з окремими генами, так і з їх ділянками.

Протягом останніх років було надруковано кілька статей про вдале використання цього методу. Так, науковцям із США вдалося успішно виправити дефектний ген на стадії одноклітинних ембріонів людини. Це вдалося зробити у 42 ембріонів із 58.

Виготовлення лікарських препаратів

Ще одним напрямком використання технологій генетичної інженерії стало виробництво лікарських препаратів для терапевтичного лікування. Деякі із сучасних препаратів просто неможливо отримати в інший спосіб. Використовують такі ліки вже досить давно. З 1982 року розпочалося масове застосування інсуліну, виробленого генетично модифікованою бактерією . Ген людського інсуліну згадуваній бактерії дістався штучно. До цього в лікуванні діабету використовували інсулін свиней і телят, який часто спричиняв ускладнення й алергічні реакції.

 

Крім інсуліну, за допомогою генетично модифікованих організмів виробляють гормон росту, інтерферон, препарати для лікування інфаркту міокарда, муковісцидозу, низки форм раку та інших захворювань.

Біоетичні проблеми сучасної медицини

Сучасні біотехнології широко використовуються в медицині. Завдяки їм стала можливою трансплантація тканин і органів, отримання стовбурових клітин, лікування великої кількості захворювань, які ще донедавна вважалися невиліковними. Але всі ці напрями роботи сучасної медицини роблять актуальною проблему біоетики — моральних аспектів застосування цих технологій.

Основними проблемами біоетики на сьогодні є:

• взяття матеріалу для трансплантації органів і тканин;

• використання людських ембріонів у дослідженнях;

• використання людських ембріонів як джерела стовбурових клітин;

• втручання в генетичний апарат ще ненароджених дітей;

• клонування людини;

• сурогатне материнство.

Основні принципи біоетики, яких бажано дотримуватися для недопущення етичних проблем, запропонували американські вчені Т. Л. Бічамп і Дж. Ф. Чілдрес (1985 р.). Принципи біоетики:

• принцип автономії (індивід має право розпоряджатися своїм здоров'ям);

• принцип «не зашкодь» (вимагає мінімалізації шкоди за медичного втручання);

• принцип блага (лікар зобов'язаний вчиняти дії, спрямовані на покращення стану пацієнта);

• принцип справедливості (вимагає рівного ставлення до всіх пацієнтів і рівного доступу до ресурсів для медичної допомоги).

 

Підручник Задорожний К. Біологія 11 клас рівень стандарту

 

https://uahistory.co/pidruchniki/zadorozhnij-biology-and-ecology-11-class-2019-standard-level/

 

§48 опрацювати

§49 опрацювати

Дайте відповіді на питання:

С.183 пит.7 - письмово  

Наведіть приклади природних процесів, які є аналогами генетичної модифікації організмів у лабораторних умовах. Поясніть значення таких процесів у природі. 

С.187 пит.7 - письмово

До яких наслідків у галузі медицини може призвести заборона використання препаратів, створених за участі генетично модифікованих організмів?

 


« повернутися

Код для вставки на сайт

Вхід для адміністратора

Онлайн-опитування:

Увага! З метою уникнення фальсифікацій Ви маєте підтвердити свій голос через E-Mail
Скасувати

Результати опитування

Дякуємо!

Ваш голос було підтверджено

Форма подання електронного звернення


Авторизація в системі електронних звернень