A A A K K K
для людей з обмеженими можливостями
Авдіївське професійно-технічне училище

інформатика

Дата: 19.03.2020 09:16
Кількість переглядів: 238

  1. Зробити свій сайт на платформі Wordpress

https://ru.wordpress.com/

 

При роботі використовувати наступні матеріали:

https://www.youtube.com/watch?v=xyOHHJFB09c&feature=youtu.be&t=130

 

По завершенні надіслати адресу свого сайту мені на пошту

iakovvvlev@gmail.com

 

  1. Занотувати наступне до зошита:

 

Системою числення, або нумерацією, називається сукупність правил і знаків, за допомогою яких можна відобразити (кодувати) будь-яке невід'ємне число. До систем числення висуваються певні вимоги, серед яких найбільш важливими є вимоги однозначного кодування невід'ємних чисел 0, 1,… з деякої їх скінченної множини — діапазону Р за скінченне число кроків і можливості виконання щодо чисел арифметичних і логічних операцій. Крім того, системи числення розв'язують задачу нумерації, тобто ефективного переходу від зображень чисел до номерів, які в даному випадку повинні мати мінімальну кількість цифр. Від вдалого чи невдалого вибору системи числення залежить ефективність розв'язання зазначених задач і її використання на практиці.


Розрізняють такі типи систем числення:

  • позиційні
  • змішані
  • непозиційні

 

Історія виникнення систем числення

Історично першими виникли непозиційні системи числення. Вони ґрунтуються на кількісному підході до визначення числа, який для кодування тих чи інших кількостей застосовував особливі знаки — числа. Кожному такому знаку відповідав кількісний еквівалент. Наприклад, у так званій римській нумерації знаку X відповідала кількість елементів множини, яка дорівнювала 10.

У подальшому такими знаками-числами користувалися також і для одержання інших чисел. Так, якщо перед знаком X ставилась вертикальна риска, то отримували знак IX, який означав, що від десяти треба відняти одиницю і результат буде дорівнювати 9. Знаки, подібні X, називаються вузловими. Вони широко використовувалися в первісних непозиційних системах числення. Слід ще раз зазначити, що серед цих знаків не було такого, який би відповідав нулю. Це свідчить про те, що нуль у той час ще не був сформований як число.

Кількість чисел, яку можна було одержати з допомогою непозиційного кодування, через його складність і відповідно велику кількість чисел, що потребували запам'ятовування, була обмежена кількома сотнями, і, крім того, щодо цих чисел досить важко було виконувати арифметичні й логічні операції. Тому в подальшому з розвитком науки виникла потреба в більш ефективних системах числення, які б мали прості правила кодування чисел, та легко виконували б щодо них арифметичні й логічні операції. Такі системи чисел були створені і отримали назву позиційних. Більш докладно ці системи числення будуть розглянуті нижче, тому що вони складають на сьогодні основу теорії систем числення взагалі.

 


« повернутися

Код для вставки на сайт

Вхід для адміністратора

Онлайн-опитування:

Увага! З метою уникнення фальсифікацій Ви маєте підтвердити свій голос через E-Mail
Скасувати

Результати опитування

Форма подання електронного звернення


Авторизація в системі електронних звернень